EN / DA
Foto: Shutterstock
Miljø og bæredygtighed

Antibiotika-resistens kan opstå i havene

Vi forbinder nok oftest antibiotika-resistens med grisebesætninger eller hospitaler. De gener, der skaber resistensen, stammer dog fra alle mulige kilder, hvor der er mikroorganismer til stede, inklusive verdenshavene, hvor der lever store komplekse mikrobielle samfund. Det kan man læse i en ny international forskningsartikel med dansk deltagelse

Den nye forskning, der er udgivet i tidsskriftet Frontiers in Microbiology, tager sit udgangspunkt i de mikrobielle samfund, der ellers normalt er skjult for os mennesker, i de såkaldte havsvampe. De op til 10.000 forskellige havsvampe der findes, er dyr. De mangler dog cellevægge, væv og organer. I stedet er deres kroppe tilpasset, så de tillader en maksimal vandgennemstrømning, da svampene får deres føde fra partikler i havet og ikke mindst fra de mikroorganismer, som de lever i tæt symbiose med.

De mikroorganismer der bor i svampene, er kendt for deres evne til at producere en række stoffer, som kan bruges mod bakterier. Produktionen af disse antimikrobielle antibiotika gør samtidig svampene til et oplagt sted at søge efter antibiotikaresistens. Forskerne undersøgte i studiet tre forskellige svampearter i Middelhavet, Aplysina aerophoba, Petrosia ficiformis, og Corticium candelabrum, for resistens.

I første omgang søgte de efter gensekvenser, der mindede om kendte resistens-gener og fandt ikke mindre end 37 oplagte gener, der kodede for resistens mod 14 forskellige og almindelige antibiotika, som vi mennesker bruger. Det resultat tyder på, at der formentlig er en hel del andre – endnu ikke kendte resistens-gener – i svampenes mikrobielle samfund.

Da resistens-gener spreder sig fra organisme til organisme, kan havene således potentielt udgøre et kæmpe reservoir af mulige resistens-gener, der kan skabe problemer for menneskers sundhed. I de sidste årtier har den massive medicinske og veterinære brug af antibiotika ført til skabelsen af multiresistente mikroorganismer, hvilket betyder dårligere behandlingsmuligheder overfor infektioner. Havsvampenes mikrober er naturligvis samtidig en potentiel kilde til at finde ny antibiotika, men det er en lidt anden historie.

Artiklen “Investigation of sponge microbiota as a reservoir for antibiotic resistance” er udkommet i tidsskriftet Frontiers in Microbiology og har medforfattere fra Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark

Morten Otto Alexander Sommer
Professor
Our work is broadly aimed towards understanding how biological systems establish, organize and evolve. We use cutting edge technology and aim to translate our basic research findings into entities, policies and education that provide long term benefits to society. Antibiotic resistance Evolution is rendering our medicines against many infections useless threatening to bring us back to the pre-antibiotic era. In many cases resistance to a particular antibiotic did not evolve within the resistant human pathogen, but rather was acquired by lateral gene transfer from other resistant bacteria. These resistant donor bacteria need not be pathogenic, yet they contribute to the evolution of antibiotic resistance in human pathogens by serving as an accessible reservoir of resistance genes. We are using a variety of culture-dependent and culture-independent methods to characterize how these reservoirs are interacting, with the ultimate goal of creating quantitative models for how antibiotic resistance genes arise in human pathogens. We study the adaptive mechanisms of drug resistance and collateral sensitivity using a combination of laboratory evolution and sampling of clinical isolates, with the goal of developing novel treatment strategies for countering resistance development. Synthetic biology for sustainable generation of value chemicals Increasing concerns related to climate change caused by our reliance on fossil fuels for many processes in our society prompt the need to look for alternatives. Biological systems can be engineered to perform conversions of renewable input substrates to value added products using much less energy than conventional methods. We use a variety of metagenomic and culture based techniques for harnessing biological diversity useful for generation of biofuels and other value chemicals. We build synthetic selection networks that sense and respond to specific metabolites inside the cell. We deploy these tools for pathway discovery, strain optimization for specific metabolic engineering targets. We use synthetic selection systems for multiplexed interrogation of biological phenotypes enhancing our understanding of cellular metabolism and regulation. Human microbiome and engineered microbiome therapeutics The human microbiome is to an increasing extent being implicated in a wide range of disease and health states. We study the human microbiome during interventions, with a particular focus on antibiotic treatment and resulting microbiome modulation. We design and build new interventions for modulating the microbiome to promote specific community compositions or functionality. We also design and build interventions that can amend the functionality encoded in the gut microbiome.