Jakob Skou Pedersen



Genomics allows us to study cells and organisms at unprecedented resolution. A single experiment can reveal the entire genome or provide millions or even billions of data points on gene expression, epigenetics, chromatin conformation, or numerous other aspects of cellular state. Given the volume of data, computational analysis is a key aspect of genomics. With proper computational analysis, these rich datasets can reveal both system-wide properties and details of individual molecular components.

Molecular characterization
When applied to medical samples and integrated with clinical data, genomics and bioinformatics become powerful tools for studying the molecular basis of disease. They allow the identification of molecular phenotypes associated with disease and potentially patient outcome. Molecular characterization provides novel methods for patient stratification and potentially improved treatment through refined precision medicine approaches.
Bioinformatics analysis can also reveal the genetic causes of diseases, with identification of the specific variants and mutations that underlie genetic disorders, disease susceptibility, or cancer development.

Precision medicine
Today, medicine is undergoing a transformation towards personalized treatment. At the heart of this transformation is bioinformatics and high-throughput data acquisition and analysis, particularly based on Next Generation Sequencing (NGS). Combined these developments drive the field of precision medicine now being implemented across clinical disciplines, with improved diagnostics and prognostics based on molecular tests promising personalized treatments with fewer side-effects and better response rates.

© All rights reserved, Sciencenews 2020